0=-16t^2+30t+20

Simple and best practice solution for 0=-16t^2+30t+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+30t+20 equation:



0=-16t^2+30t+20
We move all terms to the left:
0-(-16t^2+30t+20)=0
We add all the numbers together, and all the variables
-(-16t^2+30t+20)=0
We get rid of parentheses
16t^2-30t-20=0
a = 16; b = -30; c = -20;
Δ = b2-4ac
Δ = -302-4·16·(-20)
Δ = 2180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2180}=\sqrt{4*545}=\sqrt{4}*\sqrt{545}=2\sqrt{545}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{545}}{2*16}=\frac{30-2\sqrt{545}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{545}}{2*16}=\frac{30+2\sqrt{545}}{32} $

See similar equations:

| 4(2x-2)=6(3x+20 | | 2(4x+3)+3(2x–1)=31 | | 0.7x9=x | | -5=3(w-5)-8w | | 5(2x+1)+2(x+5)=57 | | 2u+6-5u=-6 | | 5(2x–1)+2(x+5)=57 | | 6y-9+2y=8y+16-4y | | 4x+6=3×+8 | | 10x+9=-16 | | y7-18=150 | | s7-18=150 | | 35=6n+5 | | 4y-11=24 | | 5x=12=-44-3x | | -3x(x-4)(2x+3)=0 | | 7z/5+3z/10=10 | | 7^x=420 | | 7z-3z=4/510 | | 5(2x+3)–3(3x–2)=22 | | (p+3)^2=0 | | 16d+9=8d+41 | | 6(2x-1)-3(2x-3)=3 | | 5x=12=3x=13 | | 6-z-z=2+z-z | | 19.2=3/v | | 4+4u=-12 | | 4-x=8x+8 | | 2-1+1x5=A | | -5r=0.5 | | 5x+21=5(2^x) | | (4x+12)-(3x+27)=12 |

Equations solver categories